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We present a framework for representing the prob-
abilistic effects of actions and contingent treatment
plans. Our language has a well-defined declarative
semantics and we have developed an implemented al-
gorithm (named BNG) that generates Bayesian net-
works (BN) to compute the posterior probabilities of
queries. In this paper we address the problem of pro-
jecting a contingent treatment plan by automatically
constructing a structure of interrelated BNs, which we
call a BN-graph, and applying the available propaga-
tion procedures on it. To address the optimal plan
generation, we base our approach on the observation
that normally the target plan space has a well-defined
structure. We provide a language to describe plan
spaces which resembles a programming language with
loops and conditionals. We briefly present the proce-
dures for finding the optimal plan(s) from such speci-
fied plan spaces.

INTRODUCTION

For accurate medical diagnosis, prediction and de-
cision making, it is often necessary to model a pa-
tient’s condition over time. Because there is great
uncertainty in clinical medicine, a system for di-
agnostic or prognostic evaluation must be able to
represent and reason with uncertainty. Bayesian
networks (BN) are currently the most powerful
and popular method for representing and reason-
ing with probabilistic information. A Bayesian
network is a directed acyclic graph in which the
nodes represent random variables and the links
represent direct influences. The influences are
quantified with conditional probabilities in the
form of link matrices associated with each node. A
link matrix specifies the probabilities of all possi-
ble values of a node given all possible combinations
of values of its parents.

Although BNs provide a relatively efficient
method for representing and reasoning with proba-
bilistic information, the process of computing pos-
terior probabilities (inference) in BNs remains NP-
hard [5]. This complexity becomes particularly
problematic in large models such as those that
arise in modeling temporal processes. We can
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greatly reduce the size of the network models if we
can identify some deterministic information and
use it as context to index the probabilistic infor-
mation.

We propose [1] representing a class of BNs with
a knowledge base of probabilistic rules augmented
with context constraints. A context constraint is
a logical expression that determines the applica-
bility of a probabilistic relation based on some de-
terministic knowledge. In [1], we provide a declar-
ative semantics for our language and an imple-
mented algorithm (BNG) that generates a tempo-
ral BN to compute the posterior probabilities of a
query when a set of context information, and a set
of evidence are given.

In this paper, we extend the previous work to
address the evaluation of medical contingent plans
and the generation of optimal plans. In a contin-
gent plan, some actions are performed only when
certain conditions occur. It is well-known that,
because of the uncertain nature of the outcomes
of treatments or tests, medical treatment plans
are usually contingent. We represent a contin-
gent plan (CP) as a program written in a simple
programming language with conditional and iter-
ative control structures and actions as primitive
statements. Our approach assumes that the de-
scription of action effects and domain relationship
is stored in a knowledge base of context-sensitive
probabilistic rules. We evaluate a CP with respect
to a knowledge base by constructing a structure
of interrelated BNs, which we call a BN-graph,
and applying the available probability propagation
procedures on it.

The optimal plan generation problem is usually
very hard, taking into account the nondetermin-
istic nature of action outcomes and of the uncer-
tain environment. To alleviate that problem, we
base our approach on two practical observations.
First, plans have structure so that some sequences
of actions may be ”unreasonable” plans. For ex-
ample, tests usually preceed treatment. Second,
heuristics are usually utilized by decision makers
to eliminate the portions of a plan space which



contain obviously optimal plans. In our approach,
the decision maker specifies a ”target” plan space
by a plan scheme. A plan scheme, similar to a
CP, is described by a program. The only differ-
ence is each primitive statement in a plan scheme
is a set of alternative CPs. Each plan scheme char-
acterizes a set of CPs. Our proposal contains the
procedures to find the optimal CPs amongst the
CPs characterized by a plan scheme.

Unlike decision tree methods where decision
makers have to be concerned with branching
probabilities, our approach assumes probabilistic
knowledge is prespecified in a KB. To find the
optimal plans, they need only to concentrate on
the logic of the plans, which are specified by plan
schemes and the computation of probabilities is
performed automatically.

ACUTE DEEP VENOUS
THROMBOSIS

To evaluate the applicability of our approach to
medical decision making, we construct a model
for diagnosis and treatment of acute deep venous
thrombosis (DVT) of the lower extremities. Ap-
propriate management of patients with suspected
DVT remains an important and complex clinical
problem. The clinical findings of DVT do not per-
mit diagnosis with certainty [8, 10]. Unchecked,
lower-extremity DVT can progress to pulmonary
embolism (PE), a condition that entails significant
morbidity and mortality. Anticoagulation therapy
for DVT is expensive and carries the risk of severe
hemorrhage. Even diagnostic procedures such as
venography entail risks such as contrast reaction
and iatrogenic DVT. The objective of applying de-
cision analysis to this problem is to determine the
optimal strategies for testing and treating a pa-
tient suspected of having DVT.

Our model is based on data from an article that
compared 24 different management strategies [6].
We choose this article because it contains explicit
probability and cost data. The test procedures
include contrast venography (Veno) and two non-
invasive tests: impedance plethysmography (IPG)
and real-time ultrasonography (RUS). Treatment,
which consisted solely of anticoagulation therapy,
include unconditional actions (e.g., Treat all) and
conditional actions (e.g., Treat if thigh DVT seen
on venography). Although the term “thigh DVT”
is not defined in the reference model, we take it to
mean thrombosis of the superficial femoral vein,
deep femoral vein, and/or common femoral vein.

REPRESENTATION

To represent a planning problem, we must repre-
sent the state of the world and the actions avail-
able to the planning agent. We used timed predi-
cates to represent both. Time is discrete and rep-
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resented by nonnegative integers. For example,
the predicate treat(.,.) represents the action class
"treat”. The first argument of an action pred-
icate always represents time. The ground atom

. treat(5, john) stands for the action ”treat, at time

5, a patient named John” and is an instance of
action treat. We describe the state of the world
with a set of random variables, which we rep-
resent as predicates. For example, the random
variable bleeding can be represented by a three-
~position predicate bleeding(T, X,V), where T is
the time point, X is the person and V is the value
minor, major or none.

We represent the DVT domain with six ac-
tion predicates: ipg(T, X), rus(T, X), veno(T, X),
Wait7d(T, X), Treat(T, X), and noTreat(T, X);
and seven random variable predicates. ipg,
rus and veno are tests. Wait7d is the ac-
tion ’wait 7 days’. Two random variable predi-
cates represent the outcomes of the tests, while
the remainder represent the status of the pa-
tient. The predicate nitResult(T,X,V) repre-
sents the outcome of either non-invasive test
and has values + and The predicate
venoResult(T, X,V), represents the outcome of
the venography test and has values 1 (no calf
DVT, no thigh DVT), 2 (calf DVT, no thigh
DVT), 3 (no calf DVT, thigh DVT), and 4 (calf
DVT, thigh DVT). The predicates calf(T, X, V),
thighDVT(T, X,V), dead(T,X,V), pe(T, X,V),
and bleeding(T, X, V) all have values yes and no.

We describe action effects and relations among
random variables with probabilistic sentences. A
probabilistic sentence (p-sentence) in our
language has the form P(Ag|A;,...,4n) = a «
By,...,Bm,—Ch,...,~Ck, where the A;, B; and
C; are atoms and « is a number in the [0, 1] in-
terval. The meaning of such a sentence is ”in the
context that B; are true, and none of Cj is shown
to be true, P(Ag|Ay,...,An) =”.

We assume that each action takes one unit of
time to finish. Figure 1 shows some of the p-
sentences modelling the effects of the six possible
actions. Notice that every test and treatment in-
cludes the condition that the patient is not dead
and does not have PE. IPG and RUS only test for
thigh DVT and differ only in their specificity. The
description of venography includes two sentences
describing its possible side-effects. The probabil-
ity of a fatal contrast reaction is .0001 and the
probability of venography-induced thigh DVT is
.01. The action Wait7d models the endogenous
change of the status of the patient.

CONTINGENT PLANS

We represent a CP using a programming language
in which the primitive statements are actions and
there are only two control structures: sequential
and conditional (by using the CASE construct).



P(nitResult(T + 1,X,+)| thighDVT(T, X, +), dead(T, X, no), pe(T,X,no)) = .95 — ipg(T, X);

P(nitResult(T +1,X,-)| thighDVT(T,X,-),dead(T, X,no),pe(T, X,no)) = .90 — ipg(T, X);
P(venoResult(T +1,X,1)| thighDVT(T,X,+),calf DVT(T, X, +), dead(T, X, no), pe(T, X,no)) = 0.002 — veno(T, X)
P(venoResult(T +1,X,2)| thighDVT(T,X,+),calf DVT(T, X, +), dead(T, X, no),pe(T, X, no)) = 0.018 — veno(T, X)
P(venoResult(T +1,X,3)| thighDVT(T,X,+),calfDVT(T, X, +), dead(T, X,no),pe(T, X, no)) = 0.098 — veno(T, X)
P(venoResult(T +1,X,4)| thighDVT(T,X,+),calf DVT(T, X, +), dead(T, X, no), pe(T, X,no)) = 0.882 — veno(T, X)

P(dead(T +1,X,yes)| dead(T, X, no),pe(T, X,no)) = .0001 — veno(T, X
P(thighDVT(T + 1, X,yes)| thighDVT(T, X, no),dead(T, X,no),pe(T, X,no)) = .01 — veno(T,X)

P(bleeding(T + 1, X, major)
P(bleeding(T + 1, X, minor)
P(bleeding(T + 1, X,none)
P(dead(T +1,X,yes)

P(thighDVT(T + 1, X, +)|
P(pe(T +1, X, yes)|

dead(T, X, no),pe(T, X,no)) = .05 — treat(T,X)

dead(T, X, no),pe(T, X,no)) = .05 — treat(T,X)

dead(T, X, no),pe(T, X, no)) = .9 « treat(T, X)

bleeding(T + 1, X, major), dead(T, X, no),pe(T, X,no)) = .05 — treat(T,X)

calf DVT(T, X, +), thigh(T, X, - ), dead(T, X, no),pe(T, X, no)) = .20 — wait7d(T, X)
calfDVT(T, X, —), thigh(T, X, +), dead(T, X, no), pe(T, X, no)) = .25 — wait7d(T, X)

Figure 1: A portion of the action model for DVT domain.

The conditions of CASE can refer to the values of
random variables in previous time slices. We al-
ways assume that in a CASE construct the differ-
ent branching conditions are mutually exclusive.
In the following CP, the performance of treat is
contingent on the result of the previous veno test.

veno;

CASE result IS
+ : ireat,

ENDCASE;

In a CP, we call a sequence of consecutive
generic actions in the plan which does not con-
tain the CASE or ENDCASE keywords a (sequen-
tial) plan fragment. A CP can be represented by
a graph of its maximal plan fragments as shown
in Figure 2. In the figure, the names starting
with F' denote maximal plan fragments. In the
graph representation, each horizontal bar repre-
sents a maximal plan fragment and is annotated
with the corresponding name of the fragment. The
lines connecting the horizontal bars represent the
diverging (corresponding to the CASE keyword)
and converging (corresponding to the ENDCASE
keyword) links. The diverging links are annotated
with the corresponding conditions in the program.

The Goal of Plan Projection

We are interested in evaluating the probability
of some random variables, which are called goal
random variables, at the end of the performance
of a CP. Notice that such a plan has several
branching possibilities, each with a specific time
length and a specific probability of occurrence.
For example, one branch of the CP in Figure 2 is
(F0,F1,F11, F6). Suppose the CP P has n pos-
sible branches F;,i = 1,...,n, the probability of
occurrence of branch F; is Pr(F;), the length (du-
ration) of branch F; is n; and we want to evaluate
the probability that an (atemporal) random vari-
able X achieving the value z. The desired proba-
bility is given by the following formula:

R
CASE:
Cl: F1; CASE:
CIL:Fll
CI12: F12,
C2: F2; CASE:
C21: F21
C22: F22
ENDCASE;
F5;
C3:F3;
ENDCASE;
F6;

256

Fil

Diverging points

Plan frag:

Figure 2: The graph model of a contingent plan.

Pr(X = z|P)= Y _(Pr(Ai|F:) x Pr(F:))

=1

where A; is the ground p-atom in our language
representing the fact that the random variable X
achieves the value r at time n; and Pr(A;|F;)
is the probability of A; when F; is actually per-
formed. ‘

In our framework, utility functions can be spec-
ified as arbitrary procedures which accept some
goal random variables as inputs. For the DVT
example, we use the utility function suggested in
[6] whose input parameters are the dead, pe and
bleeding status of the patient after a plan is per-
formed.

Bayesian Network-Graphs

Given a set of goal random variables and a plan
fragment F', we can use BNG [2] to construct a

Converging point



Figure 3: A BN-graph model of a contingent plan.

BN for evaluating the posterior probability of the
goal random variables after F' is performed.

A CP can be represented as a graph of plan
fragments (see Figure 2). In order to evaluate the
whole CP, we connect BNs for evaluating the plan
fragments into a Bayesian network-graph (BN-
graph) (see Figure 3). In the Figure 3, each BN-
F;,i> 0, is the BN of F;.

Let X be the set of all random variables in a
BN-graph G and z be one value assignment of
X. Then, by the mutual exclusive property of
the CASE construct, there is one and only one
maximal directed path b in G such that the con-
junction of the conditions on b is consistent with
z. We define the probability of z induced by G as
Pg(z) = Py(z), where P, is the probability func-
tion induced by the BN formed from b.

Constructing a BN-graph to Evaluate
a contingent plan

We use a backward chaining process to construct
a BN-graph to evaluate the effect of a CP on a set
of goal random variables. In the backward chain-
ing process, the random variables at the starting
state of the BNs of all plan fragments departing
from one (diverging or converging) point are used
as goal random variables in building the BN of
the plan fragment(s) immediately preceding that
point. Figure 4 shows two BNs constructed by our
procedure for two plan fragments. The purpose is
constructing the BNs relevant to the evaluation of
the final goal random variables bleeding, pe and
dead after performing the example CP of the pre-
vious section. The process starts with the final
goal random variables and the action treat(t + 1).
The random variables at the starting state of the
BN in Figure 4.(a) and the observable random
variable venoResult(t + 1) become the goal ran-
dom variables for evaluating the plan fragment
(veno(t)) (Figure 4.(b)). Figure 4.(c) shows the
BN-graph. The simplest way to evaluate this BN-
graph is considering two cases: VenoResult(1) is
+ and VenoResult(1) is -. In each case, we have
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one simple BN and we can apply any of the avail-
able propagation algorithms on it.

Notice that we do not generate the entire BN-
graph but only the portion relevant to a set of goal
random variables. This strategy makes the proce-
dure more efficient. We have shown the soundness
and completeness properties of our procedure un-
der certain conditions.

KBMC FOR MEDICAL DECISION
MAKING

Many planning systems assume that the space is
simply the infinite space defined by all possible
sequences of actions from some set [7]. But for
many practical planning problems, constraints can
be placed on the space of possible plans. For ex-
ample, in the DVT domain all reasonable plans
consist of some sequence of tests followed by treat-
ment. We specify the constraints on the plan space
by using programming language control constructs
to specify how CPs may be combined.

We represent plan space by using plan schemes.
A plan scheme is a program in which each prim-
itive statement is a set of alternative CPs, and
is called a plan step. We assume that there is
a special empty CP (containing no action) called
noact. In the next example, each alternative CP is
simply a one action plan. The control structures
are: sequential, conditional (by using the CASE
construct) and iterative. There are two iterative
constructs:

DO body UNTIL condition;

DO body UNTIL condition OR AT MOST n;
where body is a sub-plan scheme expressed in the

same language, condition is a condition and n is an

integer constant. Their semantics is the same as

that of the normal loop constructs in programming

languages.

One of the plan schemes investigated by the
original DVT study [6] can be described by the
following code.

DO
{ipg, rus};
{wait7d,noact}
UNTIL result is + OR AT MOST 2 times

CASE
result = +: {veno}
CASE
result = + : {treat}
OTHERWISE : {notreat}
ENDCASE
OTHERWISE : {notreat}
ENDCASE

Note that if actions have probabilistic effects,
iterative loops without AT MOST qualifiers may
never achieve their termination condition. How-
ever, Ngo et al. [3] show that decision-theoretic
criteria can be used to confine the search for opti-
mal plans to bounded spaces.



(a) treat(t+1)

D

T
G ~Ca>
C =T

(b) veno(t)

S

(c) BN—graph

Figure 4: (a) The BN for evaluating the plan fragment (treat(t + 1)) with respect to goal random variables
bleeding(t + 2), pe(t + 2), dead(t + 2); (b) The BN for evaluating the plan fragment (veno(t)) with respect
to goal random variables thigh DVT(t + 1), VenoResult(t + 1), pe(t + 1), dead(t + 1); (c) The BN-graph for

evaluating the example contingent plan.

To find the optimal CP(s) from a given plan
scheme, we construct a decision tree. The evalua-
tion of the decision tree is performed by the well-
known average-out-and-fold-back method [9). The
branching probabilities are obtained from evaluat-
ing dynamically constructed BN-graphs. Details
of the procedures are provided in [4].

DISCUSSION

We have presented a theoretically well-founded
method for constructing temporal Bayesian
network-graphs for the evaluation of CPs. The
presence of a formal semantics for the represen-
tation language is necessary in order to prove the
correctness of the network generation algorithm.
Such proofs are important for the high-stakes de-
cision making problems encountered in medicine.
Our technique is capable of selecting that portion
of a probability model that is relevant to a partic-
ular inference problem by using context informa-
tion and by pruning the generated network. The
naturalness of the encoding of the Deep Venous
Thrombosis domain shows that the representation
is relatively easy to use. The networks generated
to solve the example problems illustrate the po-
tential computational savings of the technique.

We also proposed a framework for optimal treat-
ment plans generation. The framework possesses
attractive features. It allows the specification of
plan structure. By maintaining separate action
models, the decision maker can concentrate on the
plan logic. In [4] we show that our framework is
more expressive than Influence Diagrams.
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